Add like
Add dislike
Add to saved papers

A Balance between van der Waals and Cation-π Interactions Stabilizes Hydrophobic Assemblies.

A thermally highly stable molecular self-assembly (nanocube) in water, the decomposition temperature of which is 415 K, was developed by designing a gear-shaped amphiphile (GSA) with an indented hydrophobic surface, even though the nanocube is stabilized only by van der Waals (vdW) and cation-π interactions as well as the hydrophobic effect. The introduction of an electron-donating substituent in one of the benzene rings of the GSA increased the decomposition temperature by 12 K, which is due to the stronger cation-π interactions between the benzene ring and positively charged pyridinium rings and tighter molecular meshing between the GSAs in the nanocube. The position of the substituent introduced in the benzene ring greatly affects the thermal stability of the nanocubes, and this indicates that both vdW (molecular meshing) and cation-π interactions are crucial for improving the thermal stability of the hydrophobic assemblies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app