Add like
Add dislike
Add to saved papers

Influences of the concentration and the molar ratio of mixed surfactants on the performance of vesicle pseudostationary phase.

Electrophoresis 2018 April 17
In our previous work, it was found that the vesicles were formed spontaneously by mixing octyltriethylammonium bromide (C8 NE3 Br) with sodium dodecyl benzene sulfonate (SDBS), and the vesicles have been developed as a pseudostationary phase (PSP) in EKC. In the present work, the effects of the concentration and the molar ratio of cationic to anionic surfactant on the vesicle properties and the performances of vesicle PSP in EKC have been investigated. The aggregates at all mixing ratio were negatively charged regardless of which surfactant surplus. As C8 NE3 Br proportion increased, the microviscosity of the vesicle became larger. With the increase in the total surfactant concentration, the migration time window broadened at the molar ratio of C8 NE3 Br to SDBS of 3:7. Unexpectedly, the window became narrowed at molar ratio of 5:5 and 6:4. However, the methylene selectivity of vesicle PSP at all above-mentioned molar ratios enhanced as the total surfactant concentration increased, no matter whether the migration time window enlarged or narrowed. It implied that the vesicle PSP at molar ratio of 5:5 and 6:4 made it possible to obtain a better separation in a shorter time. When the total surfactant concentration was fixed at 20 mM, the methylene selectivity of the vesicle PSP of molar ratio of 5:5 was comparable to that of 3:7, but the migration time shortened by a half.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app