EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Technical Note: A deep learning-based autosegmentation of rectal tumors in MR images.

Medical Physics 2018 June
PURPOSE: Manual contouring of gross tumor volumes (GTV) is a crucial and time-consuming process in rectum cancer radiotherapy. This study aims to develop a simple deep learning-based autosegmentation algorithm to segment rectal tumors on T2-weighted MR images.

MATERIAL AND METHODS: MRI scans (3T, T2-weighted) of 93 patients with locally advanced (cT3-4 and/or cN1-2) rectal cancer treated with neoadjuvant chemoradiotherapy followed by surgery were enrolled in this study. A 2D U-net similar network was established as a training model. The model was trained in two phases to increase efficiency. These phases were tumor recognition and tumor segmentation. An opening (erosion and dilation) process was implemented to smooth contours after segmentation. Data were randomly separated into training (90%) and validation (10%) datasets for a 10-folder cross-validation. Additionally, 20 patients were double contoured for performance evaluation. Four indices were calculated to evaluate the similarity of automated and manual segmentation, including Hausdorff distance (HD), average surface distance (ASD), Dice index (DSC), and Jaccard index (JSC).

RESULTS: The DSC, JSC, HD, and ASD (mean ± SD) were 0.74 ± 0.14, 0.60 ± 0.16, 20.44 ± 13.35, and 3.25 ± 1.69 mm for validation dataset; and these indices were 0.71 ± 0.13, 0.57 ± 0.15, 14.91 ± 7.62, and 2.67 ± 1.46 mm between two human radiation oncologists, respectively. No significant difference has been observed between automated segmentation and manual segmentation considering DSC (P = 0.42), JSC (P = 0.35), HD (P = 0.079), and ASD (P = 0.16). However, significant difference was found for HD (P = 0.0027) without opening process.

CONCLUSION: This study showed that a simple deep learning neural network can perform segmentation for rectum cancer based on MRI T2 images with results comparable to a human.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app