Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Regenerative Potential and Inflammation-Induced Secretion Profile of Human Adipose-Derived Stromal Vascular Cells Are Influenced by Donor Variability and Prior Breast Cancer Diagnosis.

Stem Cell Reviews 2018 August
Adipose tissue contains a heterogeneous population of stromal vascular fraction (SVF) cells that work synergistically with resident cell types to enhance tissue healing. Ease of access and processing paired with therapeutic promise make SVF cells an attractive option for autologous applications in regenerative medicine. However, inherent variability in SVF cell therapeutic potential from one patient to another hinders prognosis determination for any one person. This study investigated the regenerative properties and inflammation responses of thirteen, medically diverse human donors. Using non-expanded primary lipoaspirate samples, SVF cells were assessed for robustness of several parameters integral to tissue regeneration, including yield, viability, self-renewal capacity, proliferation, differentiation potential, and immunomodulatory cytokine secretion. Each parameter was selected either for its role in regenerative potential, defined here as the ability to heal tissues through stem cell repopulation and subsequent multipotent differentiation, or for its potential role in wound healing through trophic immunomodulatory activity. These data were then analyzed for consistent and predictable patterns between and across measurements, while also investigating the influence of the donors' relevant medical histories, particularly if the donor was in remission following breast cancer treatment. Analyses identified positive correlations among the expression of three cytokines: interleukin (IL)-6, IL-8, and monocyte chemoattractant protein (MCP)-1. The expression of these cytokines also positively related to self-renewal capacity. These results are potentially relevant for establishing expectations in both preclinical experiments and targeted clinical treatment strategies that use stem cells from patients with diverse medical histories.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app