Add like
Add dislike
Add to saved papers

Interband Photoconductivity of Metamorphic InAs/InGaAs Quantum Dots in the 1.3-1.55-μm Window.

Photoelectric properties of the metamorphic InAs/In x Ga1 - x As quantum dot (QD) nanostructures were studied at room temperature, employing photoconductivity (PC) and photoluminescence spectroscopies, electrical measurements, and theoretical modeling. Four samples with different stoichiometry of In x Ga1 - x As cladding layer have been grown: indium content x was 0.15, 0.24, 0.28, and 0.31. InAs/In0.15 Ga0.85 As QD structure was found to be photosensitive in the telecom range at 1.3 μm. As x increases, a redshift was observed for all the samples, the structure with x = 0.31 was found to be sensitive near 1.55 μm, i.e., at the third telecommunication window. Simultaneously, only a slight decrease in the QD PC was recorded for increasing x, thus confirming a good photoresponse comparable with the one of In0.15 Ga0.75 As structures and of GaAs-based QD nanostructures. Also, the PC reduction correlate with the similar reduction of photoluminescence intensity. By simulating theoretically the quantum energy system and carrier localization in QDs, we gained insight into the PC mechanism and were able to suggest reasons for the photocurrent reduction, by associating them with peculiar behavior of defects in such a type of structures. All this implies that metamorphic QDs with a high x are valid structures for optoelectronic infrared light-sensitive devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app