Add like
Add dislike
Add to saved papers

Human cancer cells utilize mitotic DNA synthesis to resist replication stress at telomeres regardless of their telomere maintenance mechanism.

Oncotarget 2018 March 24
Telomeres resemble common fragile sites (CFSs) in that they are difficult-to-replicate and exhibit fragility in mitosis in response to DNA replication stress. At CFSs, this fragility is associated with a delay in the completion of DNA replication until early mitosis, whereupon cells are proposed to switch to a RAD52-dependent form of break-induced replication. Here, we show that this mitotic DNA synthesis (MiDAS) is also a feature of human telomeres. Telomeric MiDAS is not restricted to those telomeres displaying overt fragility, and is a feature of a wide range of cell lines irrespective of whether their telomeres are maintained by telomerase or by the alternative lengthening of telomeres (ALT) mechanism. MiDAS at telomeres requires RAD52, and is mechanistically similar to CFS-associated MiDAS, with the notable exception that telomeric MiDAS does not require the MUS81-EME1 endonuclease. We propose a model whereby replication stress initiates a RAD52-dependent form of break-induced replication that bypasses a requirement for MUS81-EME1 to complete DNA synthesis in mitosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app