Add like
Add dislike
Add to saved papers

Effect of bulk modulus on deformation of the brain under rotational accelerations.

Shock Waves 2018 January
Traumatic brain injury such as that developed as a consequence of blast is a complex injury with a broad range of symptoms and disabilities. Computational models of brain biomechanics hold promise for illuminating the mechanics of traumatic brain injury (TBI) and for developing preventive devices. However, reliable material parameters are needed for models to be predictive. Unfortunately, the properties of human brain tissue are difficult to measure, and the bulk modulus of brain tissue in particular is not well-characterized. Thus, a wide range of bulk modulus values are used in computational models of brain biomechanics, spanning up to three orders of magnitude in the differences between values. However, the sensitivity of these variations on computational predictions is not known. In this work, we study the sensitivity of a 3D computational human head model to various bulk modulus values. A subject-specific human head model was constructed from T1-weighted MRI images at 2 mm3 voxel resolution. Diffusion tensor imaging provided data on spatial distribution and orientation of axonal fiber-bundles for modeling white-matter anisotropy. Non-injurious, full-field brain deformations in a human volunteer were used to assess the simulated predictions. The comparison suggests that a bulk modulus value on the order of GPa gives the best agreement with experimentally measured in vivo deformation in the human brain. Further, simulations of injurious loading suggest that bulk modulus values on the order of GPa provide the closest match with the clinical findings in terms of predicated injured regions and extent of injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app