Add like
Add dislike
Add to saved papers

HC2091 Kills Mycobacterium tuberculosis by Targeting the MmpL3 Mycolic Acid Transporter.

Tuberculosis, caused by the intracellular pathogen Mycobacterium tuberculosis , is a deadly disease that requires a long course of treatment. The emergence of drug-resistant strains has driven efforts to discover new small molecules that can kill the bacterium. Here, we report characterizations of the compound HC2091, which kills M. tuberculosis in a time- and dose-dependent manner in vitro and inhibits M. tuberculosis growth in macrophages. Whole-genome sequencing of spontaneous HC2091-resistant mutants identified single-nucleotide variants in the mmpL3 mycolic acid transporter gene. HC2091-resistant mutants do not exhibit cross-resistance with the well-characterized Mycobacterium membrane protein large 3 (MmpL3) inhibitor SQ109, suggesting a distinct mechanism of interaction with MmpL3. Additionally, HC2091 does not modulate bacterial membrane potential or kill nonreplicating M. tuberculosis , thus acting differently from other known MmpL3 inhibitors. RNA sequencing (RNA-seq) transcriptional profiling and lipid profiling of M. tuberculosis treated with HC2091 or SQ109 show that the two compounds target a similar pathway. HC2091 has a chemical structure dissimilar to those of previously described MmpL3 inhibitors, supporting the notion that HC2091 is a new class of MmpL3 inhibitor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app