Add like
Add dislike
Add to saved papers

Understanding the relationships between grazing intensity and the distribution of nitrifying communities in grassland soils.

Nitrifying microbes are of critical importance in regulating efficient nitrogen (N) cycling, which plays a crucial role in plant productivity and maintaining soil sustainability. Long-term different intensities of grazing can strongly influence the microbial communities, while our understanding of the complex nitrifying community in the grazed grassland soil environment is still limited. To investigate whether and how long-term grazing with different intensities influence soil nitrifying communities, high-throughput sequencing and quantitative PCR analyses were performed on soil samples from permanent grassland soils under four grazing intensities: 0 (G0), 1.5 (G1), 6 (G2) and 9 (G3) sheepha-1 . Results showed that the G3 treatment significantly reduced the soil nutrient content and increased the soil bulk density, changes that are not sustainable in the long run. The G1 treatment, on the other hand, significantly increased the soil nutrient content and would improve soil fertility. Some functional microbes were specifically enriched after long term grazing, like Nitrospirae (phylum) to Nitrospira (class) in the G2 samples and Chromatiales (order) to Nitrosococcus (genus) in the G3 soils. The numerically dominant Nitrosococcus watsonii lineage of ammonia oxidizing bacteria (AOB) was observed in this grassland soil. The redundancy analysis (RDA) together with the structural equation modeling (SEM) analysis showed that grazing intensity was important in mediating the distribution of soil microorganisms and affected nitrifying communities by impacting soil physicochemical characteristics (e.g., bulk density, NH4 + -N). These results showed the shifts of nitrifying communities across different grazing intensities, and could aid in the determination of an optimal grazing intensity for these grazed grassland soils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app