Add like
Add dislike
Add to saved papers

Enhancement of volatile fatty acid production and biogas yield from food waste following sonication pretreatment.

The positive effect of sonication on volatile fatty acid (VFA) and hydrogen production was investigated by batch experiments. Several sonication densities (2, 1.6, and 1.2 W/mL) and times (5, 10, and 15 min) were tested. The optimal sonication condition was ultrasonic density 2 W/mL and ultrasonic time 15 min (2-U15). The FW particle size larger than 50 μm (d > 50 μm) were more susceptible to the sonication treatment than the smaller particle size (d ≤ 50 μm). The SCOD increased and VS reduction accelerated under sonication treatment. The maximum VFA production and the highest proportion of hydrogen in the biogas increased 65.3% and 59.1%, respectively, under the optimal sonication conditions compared to the unsonicated batch. Moreover, a reduction of over 50% in the time required to reach its maximum production was also observed. Butyric acid fermentation type was obtained whether following sonication treatment or not. The composition of key microbial community differed under the various sonication conditions. The genera Clostridium and Parabacteroides are predominantly responsible for VFA generation and both were found to be abundant under the optimal condition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app