Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Deoxycholylglycine, a conjugated secondary bile acid, reduces vascular tone by attenuating Ca 2+ sensitivity via rho kinase pathway.

Patients with cirrhosis have reduced systemic vascular resistance and elevated circulating bile acids (BAs). Previously, we showed that secondary conjugated BAs impair vascular tone by reducing vascular smooth muscle cell (VSMC) Ca2+ influx. In this study, we investigated the effect of deoxycholylglycine (DCG), on Ca2+ sensitivity in reducing vascular tone. First, we evaluated the effects of DCG on U46619- and phorbol-myristate-acetate (PMA)-induced vasoconstriction. DCG reduced U46619-induced vascular tone but failed to reduce PMA-induced vasoconstriction. Then, by utilizing varied combinations of diltiazem (voltage-dependent Ca2+ channel [VDCC] inhibitor), Y27632 (RhoA kinase [ROCK] inhibitor) and chelerythrine (PKC inhibitor) for the effect of DCG on U46619-induced vasoconstriction, we ascertained that DCG inhibits VDCC and ROCK pathway with no effect on PKC. We further assessed the effect of DCG on ROCK pathway. In β-escin-permeabilized arteries, DCG reduced high-dose Ca2+ - and GTPγS (a ROCK activator)-induced vasoconstriction. In rat vascular smooth muscle cells (VSMCs), DCG reduced U46619-induced phosphorylation of myosin light chain subunit (MLC20 ) and myosin phosphatase target subunit-1 (MYPT1). In permeabilized VSMCs, DCG reduced Ca2+ - and GTPγS-mediated MLC20 and MYPT1 phosphorylation, and further, reduced GTPγS-mediated membrane translocation of RhoA. In VSMCs, long-term treatment with DCG had no effect on ROCK2 and RhoA expression. In conclusion, DCG attenuates vascular Ca2+ sensitivity and tone via inhibiting ROCK pathway. These results enhance our understanding of BAs-mediated regulation of vascular tone and provide a platform to develop new treatment strategies to reduce arterial dysfunction in cirrhosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app