Add like
Add dislike
Add to saved papers

Atomic Orbital Implementation of Extended Symmetry-Adapted Perturbation Theory (XSAPT) and Benchmark Calculations for Large Supramolecular Complexes.

We report an implementation of extended symmetry-adapted perturbation theory (XSAPT) in the atomic orbital basis, extending this method to systems where the monomers are large. In our "XSAPT(KS)" approach, monomers are described using range-separated Kohn-Sham (KS) density functional theory (DFT), with correct asymptotic behavior set by tuning the range-separation parameter ω in a monomer-specific way. This is accomplished either by conventional ionization potential (IP)-based tuning, in which ω is adjusted to satisfy the condition εHOMO (ω) = -IP(ω), or else using a "global density-dependent" (GDD) condition, in which ω is fixed based on the size of the exchange hole. The latter procedure affords better results for both total interaction energies and energy components, when used in conjunction with our third-generation pairwise atom-atom dispersion potential (+ aiD3). Three-body (triatomic) dispersion terms are found to be important when the monomers are large, and we incorporate these by means of an Axilrod-Teller-Muto term, Edisp,3B ATM , which reduces errors in supramolecular interaction energies by about a factor of 2. The XSAPT(KS) + aiD3 + Edisp,3B ATM (ωGDD ) approach affords mean absolute errors as low as 1.2 and 4.2 kcal/mol, respectively, for the L7 and S12L benchmark test sets of large dimers. Such errors are comparable to those afforded by far more expensive methods, such as DFT-SAPT, and the closely related second-order perturbation theory with coupled dispersion (MP2C). We also survey the performance of various other quantum-chemical methods for these data sets and identify several semiempirical and DFT-based approaches whose accuracy approaches that of MP2C, at dramatically reduced cost.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app