Add like
Add dislike
Add to saved papers

Ultradeep Palmitoylomics Enabled by Dithiodipyridine-Functionalized Magnetic Nanoparticles.

Palmitoylation, a type of fatty acylation, has vital roles in many biological processes. For ultradeep identification of protein palmitoylation, an enrichment approach based on a novel magnetic microsphere modified with 2,2'-dithiodipyridine (Fe3 O4 /SiO2 -SSPy microsphere) is presented in this study. The Fe3 O4 /SiO2 -SSPy microspheres were synthesized by directly coating thiol-containing silane coupling agent onto the magnetic supraparticles in aqueous solution at room temperature. Due to the intrinsic magnetic properties, high surface-to-volume ratios, and abundant reactive functional groups on the surface, these microspheres enabled direct capture of palmitoylated targets and convenient isolation, contributing to remarkable enrichment selectivity (purifying palmitoylated peptides from mixtures with nonpalmitoylated peptides even at a 1:500 molar ratio) and sensitivity (the detection limit was at femtomole level), thus enabling a global annotation of protein palmitoylation for complex biological samples. We successfully identified 1304 putative palmitoylated proteins from mouse brain tissues by using this method, which is the largest mouse palmitoylome data set to date. Except for those known members, many new proteins and pathways were also found to be regulated by palmitoylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app