Add like
Add dislike
Add to saved papers

Plakoglobin restores tumor suppressor activity of p53 R175H mutant by sequestering the oncogenic potential of β-catenin.

Cancer Science 2018 June
Tumor suppressor/transcription factor p53 is mutated in over 50% of all cancers. Some mutant p53 proteins have not only lost tumor suppressor activities but they also gain oncogenic functions (GOF). One of the most frequently expressed GOF p53 mutants is Arg175His (p53R175H ) with well-documented roles in cancer development and progression. Plakoglobin is a cell adhesion and signaling protein and a paralog of β-catenin. Unlike β-catenin that has oncogenic function through its role in the Wnt pathway, plakoglobin generally acts as a tumor/metastasis suppressor. We have shown that plakoglobin interacted with wild type and a number of p53 mutants in various carcinoma cell lines. Plakoglobin and mutant p53 interacted with the promoter and regulated the expression of several p53 target genes. Furthermore, plakoglobin interactions with p53 mutants restored their tumor suppressor/metastasis activities in vitro. GOF p53 mutants induce accumulation and oncogenic activation of β-catenin. Previously, we showed that one mechanism by which plakoglobin may suppress tumorigenesis is by sequestering β-catenin's oncogenic activity. Here, we examined the effects of p53R175H expression on β-catenin accumulation and transcriptional activation and their modifications by plakoglobin coexpression. We showed that p53R175H expression in plakoglobin null cells increased total and nuclear levels of β-catenin and its transcriptional activity. Coexpression of plakoglobin in these cells promoted β-catenin's proteasomal degradation, and decreased its nuclear levels and transactivation. Wnt/β-catenin targets, c-MYC and S100A4 were upregulated in p53R175H cells and were downregulated when plakoglobin was coexpressed. Plakoglobin-p53R175H cells also showed significant reduction in their migration and invasion in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app