Add like
Add dislike
Add to saved papers

Evolution from S 3 to S 4 States of the Oxygen-Evolving Complex in Photosystem II Monitored by Quantum Mechanics/Molecular Mechanics (QM/MM) Dynamics.

Water oxidation in the early steps of natural photosynthesis is fulfilled by photosystem II, which is a protein complex embedded in the thylakoid membrane inside chloroplasts. The water oxidation reaction occurs in the catalytic core of photosystem II, which consists of a Mn4Ca metal cluster, at which, after the accumulation of four oxidising equivalents through five steps (S0-S4) of the Kok-Joliot cycle, two water molecules are split into electrons, protons, and molecular oxygen. In recent years, by combining experimental and theoretical approaches, new insights have been achieved into the structural and electronic properties of different steps of the catalytic cycle. Nevertheless, the exact catalytic mechanism, especially concerning the final stages of the cycle, remains elusive and greatly debated. Herein, by means of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations, from the structural, electronic, and magnetic points of view, the S3 state before and upon oxidation has been characterised. In contrast with the S2 state, the oxidation of the S3 state is not followed by a spontaneous proton-coupled electron-transfer event. Nevertheless, upon modelling the reduction of the tyrosine residue in photosystem II (TyrZ ) and the protonation of Asp61, spontaneous proton transfer occurs, leading to the deprotonation of an oxygen atom bound to Mn1; thus making it available for O-O bond formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app