Add like
Add dislike
Add to saved papers

Mapping of genomic EGFRvIII deletions in glioblastoma: insight into rearrangement mechanisms and biomarker development.

Neuro-oncology 2018 September 4
Background: Epidermal growth factor receptor (EGFR) variant III (vIII) is the most common oncogenic rearrangement in glioblastoma (GBM), generated by deletion of exons 2 to 7 of EGFR. The proximal breakpoints occur in variable positions within the 123-kb intron 1, presenting significant challenges in terms of polymerase chain reaction (PCR)-based mapping. Molecular mechanisms underlying these deletions remain unclear.

Methods: We determined the presence of EGFRvIII and its breakpoints for 29 GBM samples using quantitative PCR, arrayed PCR mapping, Sanger sequencing, and whole genome sequencing (WGS). Patient-specific breakpoint PCR was performed on tumors, plasma, and cerebrospinal fluid (CSF) samples. The breakpoint sequences and single nucleotide polymorphisms (SNPs) were analyzed to elucidate the underlying biogenic mechanism.

Results: PCR mapping and WGS independently unveiled 8 EGFRvIII breakpoints in 6 tumors. Patient-specific primers yielded EGFRvIII PCR amplicons in matched tumors and in cell-free DNA (cfDNA) from a CSF sample, but not in cfDNA or extracellular-vesicle DNA from plasma. The breakpoint analysis revealed nucleotide insertions in 4 samples, an insertion of a region outside of the EGFR locus in 1, microhomologies in 3, as well as a duplication or an inversion accompanied by microhomologies in 2, suggestive of distinct DNA repair mechanisms. In the GBM samples that harbored distinct breakpoints, the SNP compositions of EGFRvIII and amplified non-vIII EGFR were identical, suggesting that these rearrangements arose from amplified non-vIII EGFR.

Conclusion: Our approach efficiently "fingerprints" each sample's EGFRvIII breakpoints. Breakpoint sequence analyses suggest that independent breakpoints arose from precursor amplified non-vIII EGFR through different DNA repair mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app