Add like
Add dislike
Add to saved papers

Exposure of Escherichia coli to human hepcidin results in differential expression of genes associated with iron homeostasis and oxidative stress.

Hepcidin belongs to the antimicrobial peptide family but has weak activity with regards to bacterial killing. The regulatory function of hepcidin in humans serves to maintain an iron-restricted environment that limits the growth of pathogens; this study explored whether hepcidin affected bacterial iron homeostasis and oxidative stress using the model organism Escherichia coli. Using the Miller assay it was determined that under low iron availability exposure to sub-inhibitory doses of hepcidin (4-12μM) led to 2-fold and 4-fold increases in the expression of ftnA and bfd, respectively (P < 0.05), in both a wild type (WT) and Δfur (ferric uptake regulator) background. Quantitative real-time PCR analysis of oxyR and sodA, treated with 4 or 8 μM of hepcidin showed that expression of these genes was significantly (P < 0.05) increased, whereas expression of lexA was unchanged, indicating that hepcidin likely mediated oxidative stress but did not induce DNA damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app