Add like
Add dislike
Add to saved papers

A Multispecific Investigation of the Metal Effect in Mammalian Odorant Receptors for Sulfur-Containing Compounds.

Chemical Senses 2018 May 24
Metal-coordinating compounds are generally known to have strong smells, a phenomenon that can be attributed to the fact that odorant receptors for intense-smelling compounds, such as those containing sulfur, may be metalloproteins. We previously identified a mouse odorant receptor (OR), Olfr1509, that requires copper ions for sensitive detection of a series of metal-coordinating odorants, including (methylthio)methanethiol (MTMT), a strong-smelling component of male mouse urine that attracts female mice. By combining mutagenesis and quantum mechanics/molecular mechanics (QM/MM) modeling, we identified candidate binding sites in Olfr1509 that may bind to the copper-MTMT complex. However, whether there are other receptors utilizing metal ions for ligand-binding and other sites important for receptor activation is still unknown. In this study, we describe a second mouse OR for MTMT with a copper effect, namely Olfr1019. In an attempt to investigate the functional changes of metal-coordinating ORs in multiple species and to decipher additional sites involved in the metal effect, we cloned various mammalian orthologs of the 2 mouse MTMT receptors, and a third mouse MTMT receptor, Olfr15, that does not have a copper effect. We found that the function of all 3 MTMT receptors varies greatly among species and that the response to MTMT always co-occurred with the copper effect. Furthermore, using ancestral reconstruction and QM/MM modeling combined with receptor functional assay, we found that the amino acid residue R260 in Olfr1509 and the respective R261 site in Olfr1019 may be important for receptor activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app