Add like
Add dislike
Add to saved papers

Enhancing the Strength of Graphene by a Denser Grain Boundary.

ACS Nano 2018 May 23
From a device application point of view, the extreme mechanical strength of graphene is highly desirable. However, the unavoidable polycrystalline nature of graphene films produced by chemical vapor deposition (CVD) leads to significant fluctuations in mechanical properties. Although the effects of atomic defects or grain boundaries (GBs) on mechanical strength have been widely studied and some modifications have been applied to enhance the stiffness of graphene, the problems of fragility as well as significantly reduced breaking strength arise. Here we report a systematic study on the effect of elastic modulus and breaking strength of CVD-derived graphene films with a controlled density and distribution of GBs. We find that graphene films become much stronger by hugely increasing the density of GBs without triple junctions (TJs) formed inside, in analogy to the two-dimensional (2D) plum pudding structures. The comprehensive performance with a 2D Young's modulus of 436 N/m (∼1.3 TPa) and 2D breaking strength of 43 N/m (∼128 GPa) can be achieved with the average grain size of 20 nm. Moreover, the existence of TJs will slightly reduce the strength in these GB structures. Due to defect types, the graphene films will show various tearing behaviors after indentation. All these mechanical studies of GBs provide a guideline to obtain the optimal performance of 2D materials through GB structure engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app