Add like
Add dislike
Add to saved papers

Facile Synthesis of a Pentiptycene-Based Highly Microporous Organic Polymer for Gas Storage and Water Treatment.

Rigid H-shaped pentiptycene units, with an intrinsic hierarchical structure, were employed to fabricate a highly microporous organic polymer sorbent via Friedel-Crafts reaction/polymerization. The obtained microporous polymer exhibits good thermal stability, a high Brunauer-Emmett-Teller surface area of 1604 m2 g-1 , outstanding CO2 , H2 , and CH4 storage capacities, as well as good adsorption selectivities for the separation of CO2 /N2 and CO2 /CH4 gas pairs. The CO2 uptake values reached as high as 5.00 mmol g-1 (1.0 bar and 273 K), which, along with high adsorption selectivity values (e.g., 47.1 for CO2 /N2 ), make the pentiptycene-based microporous organic polymer (PMOP) a promising sorbent material for carbon capture from flue gas and natural gas purification. Moreover, the PMOP material displayed superior absorption capacities for organic solvents and dyes. For example, the maximum adsorption capacities for methylene blue and Congo red were 394 and 932 mg g-1 , respectively, promoting the potential of the PMOP as an excellent sorbent for environmental remediation and water treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app