Add like
Add dislike
Add to saved papers

Key signaling pathways, genes and transcription factors associated with hepatocellular carcinoma.

The purpose of the present study was to investigate the underlying molecular mechanism of hepatocellular carcinoma (HCC) using bioinformatics approaches. The microarray dataset GSE64041 was downloaded from the Gene Expression Omnibus database, which included 60 tumor liver samples and 60 matched control samples. Differentially expressed genes (DEGs) between HCC and control groups were identified. Then functional enrichment analyses, protein‑protein interaction (PPI) network, sub‑network and integrated transcription factor (TF)‑microRNA (miRNA)‑target network analyses were performed for these DEGs. A total of 378 DEGs were obtained, including 101 upregulated and 277 downregulated DEGs. In addition, functional enrichment analysis for DEGs in the sub‑network revealed 'cell division' and 'cell cycle' as key Gene Ontology (GO) terms and pathways. Topoisomerase (DNA) IIα (TOP2A) and integrin subunit α2 (ITGA2) were hub nodes in the PPI network. TOP2A, cyclin dependent kinase 1 (CDK1) and polo like kinase 1 (PLK1) were revealed to be hub nodes in the sub‑network. Finally, 4 TFs including forkhead box M1 (FOXM1), E2F transcription factor 4 (E2F4), SIN3 transcription regulator family member A (SIN3A) and transcription factor 7 like 1 (TCF7L1) were obtained through integrated network analysis. TOP2A, ITGA2, PLK1 and CDK1 may be key genes involved in HCC development. 'Cell division' and 'cell cycle' were indicated to act as key GO terms and Kyoto Encyclopedia of Genes and Genomes pathways in HCC. In addition, FOXM1, TCF7L1, E2F4 and SIN3A were revealed to be key TFs associated with HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app