Add like
Add dislike
Add to saved papers

[Effect of ceftriaxone on the intestinal epithelium and microbiota in neonatal mice].

OBJECTIVE: To investigate the effect of ceftriaxone on the intestinal epithelium and microbiota in mice in the early-life stage, as well as the recovery of the intestinal epithelium and reconstruction of intestinal microbiota in adult mice.

METHODS: A total of 36 BALB/C neonatal mice were randomly divided into control group and experimental group, with 18 mice in each group. The mice in the experimental group were given ceftriaxone 100 mg/kg every day by gavage within 21 days after birth. Those in the control group were given an equal volume of normal saline by gavage. Immunohistochemistry was used to measure the expression of Ki67, Muc2, and ZO-1 in the intestinal epithelium. qPCR and next-generation sequencing were used to analyze the overall concentration and composition of fecal bacteria.

RESULTS: After 21 days of ceftriaxone intervention, the experimental group had a significant reduction in body weight, a significant reduction in the expression of Ki67 and ZO-1 and a significant increase in the expression of Muc2 in intestinal epithelial cells, a significant reduction in the overall concentration of fecal bacteria, and a significant increase in the diversity of fecal bacteria compared with the control group (P<0.05). Firmicutes was the most common type of fecal bacteria in the experimental group, and there were large amounts of Staphylococcus and Enterococcus. The experimental group had a certain degree of recovery of the intestinal epithelium, but there were still significant differences in body weight and the structure of intestinal microbiota between the two groups at 56 days after birth (P<0.05).

CONCLUSIONS: Early ceftriaxone intervention significantly affects the development of the intestinal epithelium and the construction of intestinal microbiota in the early-life stage. The injury of the intestinal microbiota in the early-life stage may continue to the adult stage and affect growth and development and physiological metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app