Add like
Add dislike
Add to saved papers

Dietary restriction slightly affects glucose homeostasis and delays plasma cholesterol removal in rabbits with dietary lipid lowering.

Dietary restriction (DR) has been reported to have beneficial effects on atherosclerotic progression as well as lipid and glucose metabolism, but little is known about whether these effects can be enhanced or weakened by dietary lipid lowering. Here, after 12 weeks of high-cholesterol diet feeding, hypercholesterolemic rabbits were fed with either a standard chow diet ad libitum (AL) or a standard chow diet with DR for 16 weeks of dietary lipid lowering. We found that the DR group exhibited a loss of body weight, smaller internal organs, and reduced fat mass, while the AL group accumulated more subcutaneous fat than the baseline group. DR treatment slightly worsened glucose tolerance but enhanced insulin sensitivity, and a slight effect of DR on insulin secretion was also observed. After dietary cholesterol withdrawal, rabbits showed persistent lowering of total cholesterol and triglycerides in plasma. However, the DR group had significantly higher plasma total cholesterol than the AL group at most time points during weeks 7 to 16 of lipid lowering. Although both the AL and DR groups developed more severe atherosclerosis than the baseline group, DR did not improve atherosclerotic progression or the accumulation of macrophages and smooth muscle cells. We conclude that DR affected glucose and lipid metabolism but did not ameliorate atherosclerosis in rabbits when associated with lipid lowering by dietary cholesterol withdrawal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app