Add like
Add dislike
Add to saved papers

TNFα-Induced Expression of Transport Protein Genes in HUVEC Cells Is Associated with Enhanced Expression of Transcription Factor Genes RELB and NFKB2 of the Non-Canonical NF-κB Pathway.

Endothelial HUVEC cells used as an in vitro model of the endothelial monolayer in placental barrier were activated by TNFα in a dose of 2 ng/ml for 24 h. Significant changes in the expression of genes of the SLC family transport protein were observed: an increase in the expression of SLC7A2, SLC12A2, SLC9B2, SLC25A37, SLC16A9, and SLC41A2 and a decrease in the expression of SLC40A1. These transporters participate in the transport of iron, magnesium, sodium, potassium, and chloride ions, protons, and amino acids. It was also found that SLC7A2, SLC12A2, SLC9B2, SLC25A37, and SLC41A2 genes have binding sites for transcriptional factor RelB that together with NFKB2 is the main effector of the non-canonical NF-κB pathway. The expression of RELB and NFKB2 genes was also significantly enhanced in TNFα-activated HUVEC cells, which can attest to the important role of the non-canonical NF-κB pathway in the regulation of gene expression of transport proteins in response to TNFα stimulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app