Add like
Add dislike
Add to saved papers

Human plasma proteome association and cytotoxicity of nano-graphene oxide grafted with stealth polyethylene glycol and poly(2-ethyl-2-oxazoline).

Nanoscale 2018 June 15
Polyethylene glycol (PEG) is a gold standard against protein fouling. However, recent studies have revealed surprising adverse effects of PEG, namely its immunogenicity and shortened bio-circulation upon repeated dosing. This highlights a crucial need to further examine 'stealth' polymers for controlling the protein 'corona', a new challenge in nanomedicine and bionanotechnology. Poly(2-ethyl-2-oxazoline) (PEtOx) is another primary form of stealth polymer that, despite its excellent hydrophilicity and biocompatibility, has found considerably less applications compared with PEG. Herein, we performed label-free proteomics to compare the associations of linear PEG- and PEtOx-grafted nano-graphene oxide (nGO) sheets with human plasma proteins, complemented by cytotoxicity and haemolysis assays to compare the cellular interactions of these polymers. Our data revealed that nGO-PEG enriched apolipoproteins, while nGO-PEtOx displayed a preferred binding with pro-angiogenic and structural proteins, despite high similarities in their respective top-10 enriched proteins. In addition, nGO-PEG and nGO-PEtOx exhibited similar levels of enrichment of complement proteins. Both PEG and PEtOx markedly reduced nGO toxicity to HEK 293 cells while mitigating nGO haemolysis. This study provides the first detailed profile of the human plasma protein corona associated with PEtOx-grafted nanomaterials and, in light of the distinctions of PEtOx in chemical adaptability, in vivo clearance and immunogenicity, validates the use of PEtOx as a viable stealth alternative to PEG for nanomedicines and bionanotechnologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app