Add like
Add dislike
Add to saved papers

Cisplatin Alters Sodium Excretion and Renal Clearance in Rats: Gender and Drug Dose Related.

Background: Nephrotoxicity is one of the side effects of cisplatin (CP) therapy which is gender related. CP disturbs renal function through glomerular filtration rate and electrolytes transport disturbances. This study was designed to compare some markers related to renal function in two protocols of CP treatment in rats.

Materials and Methods: Male and female rats were subjected to receive single (treat 1; 7.5 mg/kg) and continues doses (treat 2; 3 mg/kg/day for 5 days) of CP, and the measurements were compared with control animals.

Results: The serum level of blood urea nitrogen (BUN) and creatinine (Cr), and Cr-clearance, kidney tissue damage score, kidney weight, body weight change, and Na excretion was altered significantly ( P < 0.05) in animals treated with continuous dose of CP (treat 2), while alteration of BUN and Cr was gender related. The kidney levels of malondialdehyde and nitrite were significantly different between male and female in two protocols of treatments.

Conclusion: Renal function after CP therapy alters in rats' gender dependently, and it is related to protocol of treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app