Add like
Add dislike
Add to saved papers

Macromolecular Crowding May Significantly Affect the Performance of an MRI Contrast Agent: A 1 H NMR Spectroscopy, Microimaging, and Fast-Field-Cycling NMR Relaxometry Study.

ChemistryOpen 2018 April
Contrast enhancement agents are often employed in magnetic resonance imaging (MRI) for clinical diagnosis and biomedical research. However, the current theory on MRI contrast generation does not consider the ubiquitous presence of macromolecular crowders in biological systems, which poses the risk of inaccurate data interpretation and misdiagnosis. To address this issue, herein the macromolecular crowding effects on MRI contrast agent are investigated with the 1 H relaxation rate of water in aqueous solutions of Dotarem with different concentrations of macromolecules. Two representative macromolecular crowder systems are used: polyethylene glycol (with no specific secondary structure) and bovine serum albumin (with compact secondary and tertiary structures). The water 1 H relaxation rates in various solutions are measured in a fixed magnetic field and in variable magnetic fields. The results show significant crowding effects for both crowders. The relaxation rate is proportional to the concentration of the MRI contrast agent but shows conspicuous superlinearity with respect to the concentration of the crowder. The size of polyethylene glycol does not affect the relaxivity of water in Dotarem solutions. The above effects are verified with T 1 - and T 2 -weighted NMR microimages. These results highlight the importance of the effect of macromolecular crowding on the MRI contrast agent and are valuable for understanding the mechanism of MRI contrast agents and designing new-generation MRI contrast agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app