Add like
Add dislike
Add to saved papers

Genome-wide analyses of the bHLH superfamily in crustaceans: reappraisal of higher-order groupings and evidence for lineage-specific duplications.

The basic helix-loop-helix (bHLH) proteins represent a key group of transcription factors implicated in numerous eukaryotic developmental and signal transduction processes. Characterization of bHLHs from model species such as humans, fruit flies, nematodes and plants have yielded important information on their functions and evolutionary origin. However, relatively little is known about bHLHs in non-model organisms despite the availability of a vast number of high-throughput sequencing datasets, enabling previously intractable genome-wide and cross-species analyses to be now performed. We extensively searched for bHLHs in 126 crustacean species represented across major Crustacea taxa and identified 3777 putative bHLH orthologues. We have also included seven whole-genome datasets representative of major arthropod lineages to obtain a more accurate prediction of the full bHLH gene complement. With focus on important food crop species from Decapoda, we further defined higher-order groupings and have successfully recapitulated previous observations in other animals. Importantly, we also observed evidence for lineage-specific bHLH expansions in two basal crustaceans (branchiopod and copepod), suggesting a mode of evolution through gene duplication as an adaptation to changing environments. In-depth analysis on bHLH-PAS members confirms the phenomenon coined as 'modular evolution' (independently evolved domains) typically seen in multidomain proteins. With the amphipod Parhyale hawaiensis as the exception, our analyses have focused on crustacean transcriptome datasets. Hence, there is a clear requirement for future analyses on whole-genome sequences to overcome potential limitations associated with transcriptome mining. Nonetheless, the present work will serve as a key resource for future mechanistic and biochemical studies on bHLHs in economically important crustacean food crop species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app