Add like
Add dislike
Add to saved papers

Bayesian model evidence as a practical alternative to deviance information criterion.

While model evidence is considered by Bayesian statisticians as a gold standard for model selection (the ratio in model evidence between two models giving the Bayes factor), its calculation is often viewed as too computationally demanding for many applications. By contrast, the widely used deviance information criterion (DIC), a different measure that balances model accuracy against complexity, is commonly considered a much faster alternative. However, recent advances in computational tools for efficient multi-temperature Markov chain Monte Carlo algorithms, such as steppingstone sampling (SS) and thermodynamic integration schemes, enable efficient calculation of the Bayesian model evidence. This paper compares both the capability (i.e. ability to select the true model) and speed (i.e. CPU time to achieve a given accuracy) of DIC with model evidence calculated using SS. Three important model classes are considered: linear regression models, mixed models and compartmental models widely used in epidemiology. While DIC was found to correctly identify the true model when applied to linear regression models, it led to incorrect model choice in the other two cases. On the other hand, model evidence led to correct model choice in all cases considered. Importantly, and perhaps surprisingly, DIC and model evidence were found to run at similar computational speeds, a result reinforced by analytically derived expressions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app