Add like
Add dislike
Add to saved papers

Molecular and biochemical characterization of Taenia solium α-enolase.

Enolase (EC 4.2.1.11) acts as a multifunctional enzyme in many organisms, being involved in metabolism, transcription regulation and pathogenesis. In the current study, the recombinant α-enolase from Taenia solium (His-Tseno) was prepared and antiserum against His-Tseno was generated in rabbits. Consequently, we analyzed the enzymatic characteristics, plasminogen binding activity, tissue localization and expression patterns of Tseno. The study demonstrated that the enzymatic activity of His-Tseno was enhanced at pH around 7.0-7.5 and affected by addition of metal ions. Kinetic measurements using 2-phospho-d-glycerate (2-PGA) substrates gave a specific activity of 60.72 ± 0.84 U/mg and 1.1 mM of Km2-PGA value. Plasminogen binding assay showed that His-Tseno could bind to human plasminogen and generate plasmin activated by a tissue-type plasminogen activator (t-PA). In addition, the lysine analogue 6-aminocaproic acid (ε-ACA) could inhibit the binding of plasminogen to His-Tseno. Quantitative real-time PCR confirmed that Tseno was expressed 2.38 folds higher in the adult worms (p < 0.05) than in the cysticerci. Further, an immunolocalization assay indicated that native Tseno was mainly distributed in the tegument and eggs of gravid proglottis from adult T. solium. In conclusion, Tseno executes the innate glycolytic function to supply energy for the growth, egg production, and even invasion of T. solium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app