Add like
Add dislike
Add to saved papers

Distinct Accumbens Shell Output Pathways Promote versus Prevent Relapse to Alcohol Seeking.

Neuron 2018 May 3
Contexts exert bi-directional control over relapse to drug seeking. Contexts associated with drug self-administration promote relapse, whereas contexts associated with the absence of self-administration protect against relapse. The nucleus accumbens shell (AcbSh) is a key brain region determining these roles of context. However, the specific cell types, and projections, by which AcbSh serves these dual roles are unknown. Here, we show that contextual control over relapse and abstinence is embedded within distinct output circuits of dopamine 1 receptor (Drd1) expressing AcbSh neurons. We report anatomical and functional segregation of Drd1 AcbSh output pathways during context-induced reinstatement and extinction of alcohol seeking. The AcbSh→ventral tegmental area (VTA) pathway promotes relapse via projections to VTA Gad1 neurons. The AcbSh→lateral hypothalamus (LH) pathway promotes extinction via projections to LH Gad1 neurons. Targeting these opposing AcbSh circuit contributions may reduce propensity to relapse to, and promote abstinence from, drug use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app