Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Dissecting Porosity in Molecular Crystals: Influence of Geometry, Hydrogen Bonding, and [π···π] Stacking on the Solid-State Packing of Fluorinated Aromatics.

Porous molecular crystals are an emerging class of porous materials that is unique in being built from discrete molecules rather than being polymeric in nature. In this study, we examined the effects of molecular structure of the precursors on the formation of porous solid-state structures with a series of 16 rigid aromatics. The majority of these precursors possess pyrazole groups capable of hydrogen bonding, as well as electron-rich aromatics and electron-poor tetrafluorobenzene rings. These precursors were prepared using a combination of Pd- and Cu-catalyzed cross-couplings, careful manipulations of protecting groups on the nitrogen atoms, and solvothermal syntheses. Our study varied the geometry and dimensions of precursors, as well as the presence of groups capable of hydrogen bonding and [π···π] stacking. Thirteen derivatives were crystallographically characterized, and four of them were found to be porous with surface areas between 283 and 1821 m2 g-1 . Common to these four porous structures were (a) rigid trigonal geometry, (b) [π···π] stacking of electron-poor tetrafluorobenzenes with electron-rich pyrazoles or tetrazoles, and

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app