Add like
Add dislike
Add to saved papers

First Attempt of Glycidol-to-Monoalkyl Glyceryl Ethers Conversion by Acid Heterogeneous Catalysis: Synthesis and Simplified Sustainability Assessment.

ChemSusChem 2018 June 12
The selective preparation of monoalkylglyceryl ethers (MAGEs) is a task for researchers owing to their broad range of applications. In this work, green feedstocks such as glycidol and alcohols were used to prepare MAGEs under mild reaction conditions (80 °C, 3 h, 0.5 mol % catalyst) in the presence of acid heterogeneous catalysts. Nafion shows the best performances in terms of conversion and selectivity to MAGES and also high stability. A comparison of the environmental performances with the most consolidated pathway from glycerol has shown that the usage of glycidol (recovered as a value-added product from Epicerol process) and Nafion leads to a lower impact on ecosystems. In addition, results achieved from a simplified socio-economic analysis show that the innovative route here proposed has potential (at the laboratory scale) of enhancing potential gains and of reducing the social implications resulting from externalities associated with environmental impacts (e.g., CO2 equivalents).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app