Add like
Add dislike
Add to saved papers

Acidic and alkaline chemicals' influence on a tricalcium silicate-based dental biomaterial.

Bioactive hydraulic tricalcium silicate materials are commonly used in several dental procedures. Mineral Trioxide Aggregate (MTA) is one such material, which is used in a variety of clinical applications, the most recent of which is root canal sealing material, during which, the MTA potentially comes in contact with remnants of the chemical agents used for disinfecting root canals. The effects of commonly used root canal irrigating solutions on MTA have not been investigated in depth, thus far. The aim of this study was to determine the effect of five common chemical agents used in root canal preparation (sodium hypochlorite/NaOCl, ethylene diaminetetraacetic acid/EDTA, mixture of sodium hypochlorite and etidronic acid/NaOCl + EA, mixture of EDTA and Chlorhexidine/QMix, or saline) on a commercial tricalcium silicate (MTA Plus). Samples were analyzed using scanning electron microscopy with energy dispersive spectroscopy, X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy and Inductively coupled plasma techniques to see effects of phases formed and calcium ion release. Specimens immersed in NaOCl and NaOCl + EA had strong peaks for calcium hydroxide, but materials exposed to EDTA and QMix had lesser XRD peaks for calcium hydroxide. The calcium hydroxide peak in the XRD indicates hydration of tricalcium silicate and formation of amorphous calcium silicate hydrate. Calcium released from samples immersed in EDTA and NaOCl was less than in NaOCl + EA and QMix solutions. Fewer calcium phosphate crystals and less calcium hydroxide were observed with the samples in NaOCl, EDTA and QMix, which could have an important impact as it negatively influences the bioactivity. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app