COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Morphology of living cells cultured on nanowire arrays with varying nanowire densities and diameters.

Vertical nanowire arrays are increasingly investigated for their applications in steering cell behavior. The geometry of the array is an important parameter, which influences the morphology and adhesion of cells. Here, we investigate the effects of array geometry on the morphology of MCF7 cancer cells and MCF10A normal-like epithelial cells. Different gallium phosphide nanowire array-geometries were produced by varying the nanowire density and diameter. Our results show that the cell size is smaller on nanowires compared to flat gallium phosphide. The cell area decreases with increasing the nanowire density on the substrate. We observed an effect of the nanowire diameter on MCF10A cells, with a decreased cell area on 40 nm diameter nanowires, compared to 60 and 80 nm diameter nanowires in high-density arrays. The focal adhesion morphology depends on the extent to which cells are contacting the substrate. For low nanowire densities and diameters, cells are lying on the substrate and we observed large focal adhesions at the cell edges. In contrast, for high nanowire densities and diameters, cells are lying on top of the nanowires and we observed point-like focal adhesions distributed over the whole cell. Our results constitute a step towards the ability to fine-tune cell behavior on nanowire arrays.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app