Add like
Add dislike
Add to saved papers

Analysis of regeneration- and myelination-associated proteins in human neuroma in continuity and discontinuity.

BACKGROUND: Neuromas are pathologic nerve distensions caused by a nerve's response to trauma, resulting in a dysfunctional to non-functional nerve. Depending on the severance of the affected nerve, the resulting neuroma can be differentiated into continuous and stump neuroma. While neuroma formation has been investigated in animal models with enormous regenerative capacity, the search for differences in human response to nerve trauma on a molecular level ultimately seeks to identify reasons for functionally successful versus unsuccessful regeneration after peripheral nerve trauma in man.

METHODS: In the present study, the regenerative potential of axons and the capability of Schwann cells (SC) to remyelinate regenerating axons was quantitatively and segmentally analyzed and compared within human neuroma in-continuity and discontinuity.

RESULTS: For the stump neuroma and the neuroma in-continuity, there was a significant reduction of the total number of axons (86% stump neuroma and 91% neuroma in-continuity) from the proximal to the distal part of the neuroma, while the amount of fibrotic tissue increased, respectively. Labeling the myelin sheath of regenerating axons revealed a remyelination of regenerating axons by SCs in both neuroma types. The segmented analysis showed no distinct alterations in the number and spatial distribution of regenerating, mature, and myelinated axons between continuous and discontinuous neuroma.

CONCLUSIONS: The quantitative and segmented analysis showed no distinct alterations in the number and spatial distribution of regenerating, mature, and myelinated axons between continuous and discontinuous neuroma, while the extensive expression of Gap43 in up to 55% of the human neuroma axons underlines their regenerative capacity independent of whether the neuroma is in continuity or discontinuity. Remyelination of Gap43-positive axons suggests that the capability of SCs to remyelinate regenerating axons is preserved in neuroma tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app