Add like
Add dislike
Add to saved papers

Autologous serum collected 1 h post-exercise enhances natural killer cell cytotoxicity.

Natural Killer cells are cytotoxic lymphocytes that recognize and eliminate tumor cells. Exercise enhances NK cell cytotoxic activity (NKCA), yet the underlying mechanisms are not fully understood. Exercise-induced shifts in NK-cell subsets has been proposed as one mechanism. Alternatively, exercise alters stress hormone and cytokine levels, which are also known to affect NKCA.

AIM: Determine the role(s) of exercise-induced shifts in the proportions of NK-cell subsets found in the blood, and changes in serum IL-2, IL-6, IL-12, IFN-γ, TNF-α and cortisol, on exercise-induced changes in NKCA.

METHODS: Twelve adults cycled 30 min at 115% of their lactate threshold power. Peripheral blood mononuclear cells (PBMCs) and serum were isolated from blood collected pre-, post-, and 1 h post-exercise. To investigate the effect of shifts in NK-cell subsets, pre-, post- and 1 h post-exercise NK cells were incubated with target cells (K562 and U266) in the presence of autologous pre-exercise serum. The effects of hormones and cytokines released during exercise were determined by incubating pre-exercise PBMCs with tumor target cells (K562 and U266) in the presence of pre-, post-, and 1 h post-exercise serum. NKCA and phenotypes were assessed by flow cytometry.

RESULTS: Although exercise mobilized high-differentiated NK cell subsets (NKG2A-/KIR+), NKCA per cell was not altered post-exercise in the presence of pre-exercise serum. Conversely, 1 h post-exercise serum significantly increased the cytotoxicity of pre-exercise NK cells against HLA-expressing target cells (U266). This increase associated with lower levels of cortisol, and occurred when serum contained higher levels of IFN-γ.

CONCLUSIONS: Exercise-induced shifts in NK-cell subsets did not fully explain changes in NKCA. Rather, factors present in serum during exercise recovery enhanced NKCA against target cells. Our results suggest lower cortisol and higher IFN-γ levels may explain exercise-induced changes in NKCA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app