Add like
Add dislike
Add to saved papers

The molecularly imprinted polymer supported by anodic alumina oxide nanotubes membrane for efficient recognition of chloropropanols in vegetable oils.

Food Chemistry 2018 August 31
A new route to synthesize a covalent interaction-based molecularly imprinted polymer (MIP) material for 3-chloro-1,2-propanediol (3-MCPD) inside the nanopores of anodic alumina oxide (AAO) is presented. A series of adsorption experiments showed MIP had good extraction capacity and selectivity for 3-MCPD. In order to evaluate the usability of the MIP nanotubes membrane, a method combining AAO@MIP membrane extraction with gas chromatography - mass spectrometry (GC-MS) detection was developed for determination of chloropropanols. The limits of detection for the proposed method were 0.072 and 0.13 µg·L-1 , respectively, for 3-MCPD and 1,3-DCP. The average recoveries of 3-MCPD and 1,3-DCP spiked oil samples at three concentrations (0.01, 0.05 and 0.1 mg·kg-1 ) were in the range of 75.6-101.0% with a RSD of 3.3-8.4%, indicating the method would be suitable for determination of chloropropanols in vegetable oils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app