Add like
Add dislike
Add to saved papers

In vitro effects of rebaudioside A, stevioside and steviol on porcine cytochrome p450 expression and activity.

Food Chemistry 2018 August 31
The physiological effects of the Stevia-derived compounds, rebaudioside A, stevioside and steviol have been the focus of several studies due to their use as sweeteners in food. Despite that, little is known about their potential food-drug interactions. In the present study, IPEC-J2 cells and primary hepatocytes were used to investigate the effect of rebaudioside A, stevioside and steviol on cytochrome p450 (CYP) mRNA expression. Moreover, hepatic microsomes were used to investigate direct interactions between the compounds and specific CYP activity. In IPEC-J2 no changes in mRNA expression of CYP1A1 or CYP3A29 were observed with the Stevia-derived compounds. In primary hepatocytes all three tested compounds induced a significant increase in CYP3A29 expression. The tested compounds had no direct effect on specific CYP activity. In conclusion, rebaudioside A, stevioside and steviol induce only minor or no changes to the CYP expression and activity, and are not likely to cause food-drug interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app