Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Extraction kinetic modelling of total polyphenols and total anthocyanins from saffron floral bio-residues: Comparison of extraction methods.

Food Chemistry 2018 August 31
Analysis of the extraction kinetic modelling for natural compounds is essential for industrial application. The second order rate model was applied to estimate the extraction kinetics of conventional solid-liquid extraction (CSLE), ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) of total polyphenols (TPC) from saffron floral bio-residues at different solid-to-liquid ratios (RS/L )(1:10, 1:20, 1:30, 1:50 g ml-1 ), ethanol 59% as solvent and 66 °C temperature. The optimum solid-to-liquid ratios for TPC kinetics were 1:20 for CLSE, 1:30 for UAE and 1:50 for MAE. The kinetics of total anthocyanins (TA) and antioxidant activity (AA) were investigated for the optimum RS/L for each method. The results showed a good prediction of the model for extraction kinetics in all experiments (R2  > 0.99; NRMS 0.65-3.35%). The kinetic parameters were calculated and discussed. UAE, compared with the other methods, had the greater efficiency for TPC, TA and AA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app