Add like
Add dislike
Add to saved papers

Laser induced breakdown in gas mixtures. Experimental and statistical investigation on n-decane ignition: Pressure, mixture composition and equivalence ratio effects.

This paper presents a physical and statistical approach to laser-induced breakdown in n-decane/N2  + O2 mixtures as a function of incident or absorbed energy. A parametric study, with pressure, fuel purity and equivalence ratio, was conducted to determine the incident and absorbed energies involved in producing breakdown, followed or not by ignition. The experiments were performed using a Q-switched Nd-YAG laser (1064 nm) inside a cylindrical 1-l combustion chamber in the range of 1-100 mJ of incident energy. A stochastic study of breakdown and ignition probabilities showed that the mixture composition had a significant effect on ignition with large variation of incident or absorbed energy required to obtain 50% of breakdown. It was observed that the combustion products absorb more energy coming from the laser. The effect of pressure on the ignition probabilities of lean and near stoichiometric mixtures was also investigated. It was found that a high ignition energy E50% is required for lean mixtures at high pressures (3 bar). The present study provides new data obtained on an original experimental setup and the results, close to laboratory-produced laser ignition phenomena, will enhance the understanding of initial conditions on the breakdown or ignition probabilities for different mixtures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app