Add like
Add dislike
Add to saved papers

Oxidative stress and dietary micronutrient deficiencies contribute to overexpression of epigenetically regulated genes by lupus T cells.

Patients with active lupus have altered T cells characterized by low DNA methyltransferase levels. We hypothesized that low DNA methyltransferase levels synergize with low methionine levels to cause greater overexpression of genes normally suppressed by DNA methylation. CD4+ T cells from lupus patients and controls were stimulated with PHA then cultured in custom media with normal or low methionine levels. Oxidative stress was induced by treating the normal CD4+ T cells with peroxynitrite prior to culture. Methylation sensitive gene expression was measured by flow cytometry. Results showed low methionine levels caused greater overexpression of methylation sensitive genes in peroxynitrite treated T cells relative to untreated T cells, and in T cells from lupus patients relative to T cells from healthy controls. In conclusion, low dietary transmethylation micronutrient levels and low DNA methyltransferase levels caused either by oxidative stress or lupus, have additive effects on methylation sensitive T cell gene expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app