Add like
Add dislike
Add to saved papers

Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection.

Anaerobe 2018 October
A significant proportion of individuals develop recurrent Clostridium difficile infection (CDI) following initial disease. Fecal microbiota transplantation (FMT), a highly effective treatment method for recurrent CDI, has been demonstrated to induce microbiota recovery. One of the proposed functions associated with restoration of colonization resistance against C. difficile has been recovery of bile acid metabolism. In this study, we aimed to assess recovery of short chain fatty acids (SCFAs) in addition to bile acids alongside microbial community structure in six patients with recurrent CDI following treatment with FMT over time. Using 16S rRNA gene-based sequencing, we observed marked similarity of the microbiota between recipients following FMT (n = 6, sampling up to 6 months post-FMT) and their respective donors. Sustained increases in the levels of the SCFAs butyrate, acetate, and propionate were observed post-FMT, and variable recovery over time was observed in the secondary bile acids deoxycholate and lithocholate. To correlate these changes with specific microbial taxa at an individual level, we applied a generalized estimating equation approach to model metabolite concentrations with the presence of specific members of the microbiota. Metabolites that increased following FMT were associated with bacteria classified within the Lachnospiraceae, Ruminococcaceae, and unclassified Clostridiales families. In contrast, members of these taxa were inversely associated with primary bile acids. The longitudinal aspect of this study allowed us to characterize individualized patterns of recovery, revealing variability between and within patients following FMT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app