Add like
Add dislike
Add to saved papers

Immobilization of cellulase on thermo-sensitive magnetic microspheres: improved stability and reproducibility.

Magnetic double-shell hybrid microspheres (Fe3 O4 @SiO2 @p(NIPAM-co-GMA)) have been developed as a promising supported substrate for the immobilization of cellulase. Since the surface of the magnetic microspheres not only contains an epoxy group from GMA (glycidyl methacrylate) that can covalently bind to the enzyme, but also has an intelligent temperature response property from NIPAM (N-isopropylacrylamide), the cellulase can be covalently bonded to the magnetic microspheres and have a temperature-sensitive capability. The immobilized cellulase has the recovery ability of cellulase activity after a high-temperature inactivation. The average amount and activity of immobilized enzymes, respectively, was 233 mg g-1 , 57.4 U mg-1 under the optimized conditions. The experimental results show that the immobilized cellulase has a wider catalytic temperature range, better temperature and storage stability. The residual activity still remained about 65.6% of the initial activity after the sixth catalysis run, which indicated that the immobilized enzyme had high reproducibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app