Add like
Add dislike
Add to saved papers

NOX4 Deletion in Male Mice Exacerbates the Effect of Ethanol on Trabecular Bone and Osteoblastogenesis.

Chronic alcohol consumption increases bone resorption and decreases bone formation. A major component of ethanol (EtOH) pathology in bone is the generation of excess reactive oxygen species (ROS). The ROS-generating NADPH oxidase-4 (NOX4) is proposed to drive much of the EtOH-induced suppression of bone formation. Here, 13-week-old male wild-type (WT) and NOX4-/- mice were pair fed (PF) a high-fat (35%), Lieber-DeCarli liquid diet with or without EtOH at 30% of their total calories for 12 weeks. Micro-computed tomography analysis demonstrated significant decreases in trabecular bone volume/total volume (BV/TV) percentage and cortical thickness in WT, EtOH-fed mice compared with PF controls. EtOH-fed NOX4-/- mice also displayed decreased trabecular BV/TV and trabecular number compared with PF ( P < 0.05). However, NOX4-/- mice were protected against EtOH-induced decreases in cortical thickness ( P < 0.05) and decreases in collagen1 and osteocalcin mRNA expression in cortical bone ( P < 0.05). In WT and NOX4-/- vertebral bone, EtOH suppressed expression of Wnt signaling components that promote osteoblast maturation. A role for NOX4 in EtOH inhibition of osteoblast differentiation was further demonstrated by protection against EtOH inhibition of osteoblastogenesis in ex vivo bone marrow cultures from NOX4-/- , but not p47phox-/- mice lacking active NADPH oxidase-2. However, bone marrow cultures from NOX4-/- mice formed fewer osteoblastic colonies compared with WT cultures ( P < 0.05), suggesting a role for NOX4 in the maintenance of mesenchymal progenitor cell populations. These data suggest that NOX4 deletion is partially protective against EtOH effects on osteoblast differentiation, but may predispose bone to osteogenic impairments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app