Add like
Add dislike
Add to saved papers

Mechanism of Action of the Cytotoxic Asmarine Alkaloids.

The asmarines are a family of cytotoxic natural products whose mechanism of action is unknown. Here, we used chemical synthesis to reverse engineer the asmarines and understand the functions of their individual components. We found that the potent asmarine analog "delmarine" arrested the mammalian cell cycle in the G1 phase and that both cell cycle arrest and cytotoxicity were rescued by cotreatment with ferric and ferrous salts. Cellular iron deprivation was clearly indicated by changes in iron-responsive protein markers, and cytotoxicity occurred independently of radical oxygen species (ROS) production. Chemical synthesis allowed for annotation of the distinct structural motifs required for these effects, especially the unusual diazepine, which we found enforced an iron-binding tautomer without distortion of the NCNO dihedral angle out of plane. With this information and a correlation of cytotoxicity with logP, we could replace the diazepine by lipophilic group appendage to N9, which avoided steric clash with the N6-alkyl required to access the aminopyridine. This study transformed the asmarines, scarce marine metabolites, into easily synthesized, modular chemotypes that may complement or succeed iron-selective binders in clinical trials and use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app