Add like
Add dislike
Add to saved papers

Dynamics of liquid crystalline phase transition in sedimenting platelet-like particles.

Soft Matter 2018 April 26
When a suspension of platelet-like particles sediment in a closed container, the particles undergo isotropic-nematic phase transition (I-N transition), and there appears a clear interface between the isotropic phase and the nematic phase. Usually the interface moves from bottom to top since the nematic phase appears and grows at the bottom, but it has been observed that in some situations the interface moves from top to bottom. Here, we study the dynamics of the interface by solving the non-equilibrium diffusion equation for the concentration of platelet-like particles, and show that the I-N interface can move upward (rising interface) or downward (falling interface) depending on whether the initial concentration is less than the critical concentration of I-N transition or more than it. We give a simple analysis theory for the motion of the interface in each case, which agrees well with the numerical calculations. We also show that the numerical results are in reasonable agreement with existing experimental measurements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app