Add like
Add dislike
Add to saved papers

Orbital angular momentum mode multiplexed transmission in heterogeneous few-mode and multi-mode fiber network.

Optics Letters 2018 April 16
Mode-division multiplexing (MDM), which employs the spatial modes of light as information carriers, has been widely investigated to increase the transmission capacity. Few-mode fibers (FMFs) and multi-mode fibers (MMFs) have been used for MDM fiber transmission. One of the MDM techniques known as twisted light multiplexing using orbital angular momentum (OAM) modes has recently attracted increasing interest. In this Letter, by splicing two FMFs together with a conventional OM3 MMF, we propose and demonstrate OAM-based MDM in a heterogeneous fiber-optic network, i.e., two OAM mode (OAM01 and OAM-11 ) multiplexing transmission in the heterogeneous FMFs and MMF network. We transmit 20-Gbit/s quadrature phase shift keying signals over two OAM modes in different mode groups without multiple-input multiple-output equalization techniques and achieve less than 2.8 dB optical signal-to-noise ratio penalties at a bit-error rate of 2×10-3 . The experimental results show favorable transmission performance of OAM-based MDM in heterogeneous FMFs and MMF network compared to the one in FMF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app