Add like
Add dislike
Add to saved papers

Insights into 2- and 4(5)-Nitroimidazole Decomposition into Relevant Ions and Molecules Induced by VUV Ionization.

Nitromidazoles are relevant compounds of multidisciplinary interest, and knowledge of their physical-chemical parameters as well as their decomposition under photon irradiation is needed. Here we report an experimental and theoretical study of the mechanisms of VUV photofragmentation of 2- and 4(5)-nitromidazoles, compounds used as radiosensitizers in conjunction with radiotherapy as well as high-energy density materials. Photoelectron-photoion coincidence experiments, measurements of the appearance energies of the most important ionic fragments, density functional theory, and single-point coupled cluster calculations have been used to provide an overall insight into the energetics and structure of the different ionic/neutral products of the fragmentation processes. The results show that these compounds can be an efficient source of relevant CO, HCN, NO, and NO2 molecules and produce ions of particular astrophysical interest, like the isomers of azirinyl cation ( m/ z 40), predicted to exist in the interstellar medium, and protonated hydrogen cyanide ( m/ z 28).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app