Add like
Add dislike
Add to saved papers

Finding the molecular scaffold of nuclear receptor inhibitors through high-throughput screening based on proteochemometric modelling.

Nuclear receptors (NR) are a class of proteins that are responsible for sensing steroid and thyroid hormones and certain other molecules. In that case, NR have the ability to regulate the expression of specific genes and associated with various diseases, which make it essential drug targets. Approaches which can predict the inhibition ability of compounds for different NR target should be particularly helpful for drug development. In this study, proteochemometric modelling was introduced to analysis the bioactivity between chemical compounds and NR targets. Results illustrated the ability of our PCM model for high-throughput NR-inhibitor screening after evaluated on both internal (AUC > 0.870) and external (AUC > 0.746) validation set. Moreover, in-silico predicted bioactive compounds were clustered according to structure similarity and a series of representative molecular scaffolds can be derived for five major NR targets. Through scaffolds analysis, those essential bioactive scaffolds of different NR target can be detected and compared. Generally, the methods and molecular scaffolds proposed in this article can not only help the screening of potential therapeutic NR-inhibitors but also able to guide the future NR-related drug discovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app